EMPLOYEE RIGHT to KNOW Training

FSU employees have the right to know the properties and potential safety and health hazards of substances to which they may be exposed. Such knowledge is essential for reducing the risk of occupational illness and injury.

Employees must receive annual training in hazard communications and new employees must receive their initial training within the first 30 days of employment. This training includes information concerning the components of the hazard communication program as well as site specific training on the chemicals/products actually used by the employee.

The Environmental Health & Safety (EH&S) Department will be offering the Right to Know (RTK) training on the first Tuesday of every month. It will be held in room 101 of the MMA building at 9:30 AM. The class will be approximately 30 minutes in length.

Hazardous Waste Awareness and Laboratory Safety training classes will follow the RTK class. An employees position description/duties identifies whether these courses are required. Limited space requires that seating be on a first come first serve basis. To pre-register or for more information please contact Carl Green at 644-0971 or cgreen@admin.fsu.edu.

Whose fault is it???

The world of insurance is very confusing. In many cases there are conditions that many of us are unaware of. One of these is the concept of liability. Many employees and students believe that, if injured or their personal property is damaged while on FSU’s property, they are automatically entitled to reimbursement for their loss. In order to determine if there is a payment to be made the issue of liability must be addressed. To be eligible for reimbursement, the University must be liable. Simply stated, the University must have knowledge of an unsafe condition that it did not correct and to have caused the loss in some manner. Many cases may simply be accidents with no attributable negligence or it may be entirely from another source. This information is important because when the University is not liable, it means each of us is financially responsible for injuries to ourselves (excluding workers’ compensation) or for damage to our own property.

To protect ourselves we must have insurance. While there are many types of insurance available, most of these cases can be covered through two types. Typically they are health insurance for injuries and property insurance for personal property. For students health insurance may be purchased at specified times through the Thagard Health Center or they may be covered under a parent’s medical insurance. Property insurance may be available through a parent’s homeowner’s insurance or separate policy. For this last coverage, you must ask your insurer to cover personal property “away from the premises” since insurance companies cover property at home unless you tell them differently. Similarly employees may purchase appropriate coverage for their potential losses. In all cases it is prudent to discuss your needs with your insurance agent. He/she can identify potential solutions for your needs.
Danger Zones in the Kitchen

All of us use our kitchens everyday and many people consider their kitchens a clean and safe environment. However, it is estimated that 80 percent of all food-borne illnesses are contracted from the home. The Council for the Agricultural Science and Technology estimates 9000 deaths and 6.5 to 33 million illnesses each year in the United States are food related. The Department of Agriculture estimates the medical cost and productivity loss for the seven major food pathogens in the United States to be $6.5 to $34.9 billion annually. The current belief from the Food and Drug Administration is "Treat all foods as if they are potentially contaminated." With that in mind let's test your knowledge of the potential "Hot Zones" in your kitchen with this quiz.

1. The most common agent of food poisoning is
 a. Staphylococci aureus
 b. E. Coli
 c. Salmonella
 d. Campylobacter
 Answer: a. Staphylococci exist in air, dust, sewage, water, milk, and food or on food equipment, environmental surfaces, humans, and animals. Humans and animals are the primary reservoirs. Staphylococci are present in the nasal passages and throats and on the hair and skin of 50 percent or more of healthy individuals. Human intoxication is caused by ingesting enterotoxins produced in food by some strains of S. aureus, usually because the food has not been kept hot enough (60°C, 140°F, or above) or cold enough (7.2°C, 45°F, or below). The most common symptoms are nausea, vomiting, retching, abdominal cramping, and prostration. Some individuals may not always demonstrate all the symptoms associated with the illness.

2. Food can be left safely at room temperature for
 a. 30 minutes
 b. 2 hours
 c. 6 hours
 d. 24 hours
 Answer: b. Food should be refrigerated within 2 hours. During the summer when the temperature rises past 90°F food should be refrigerated within 1 hour. Never taste test food that has been sitting out. Even a small amount of contaminated food can cause illness.

3. The best way to thaw food is
 a. In hot water
 b. In the refrigerator
 c. Out in the open air
 d. Cooking it directly out of the freezer
 Answer: b. The best way to thaw food is in the refrigerator. The USDA also recommends that food can be thawed in cold water as long as the water is changed every 30 minutes. Or, food can be thawed in the microwave as long as it is cooked immediately after thawing. Small frozen portions such as TV dinners can be cooked without thawing.

4. Eggs are fine to eat raw
 a. True
 b. False
 See Answer on pg 3
 Answer from pg 2

Fire Sprinklers The Complete Story

History
Sprinklers were invented by an American, Henry S. Parmalee, in 1874 to protect his piano factory. Until the 1940s and 1950s, sprinklers were installed almost exclusively for the protection of buildings, especially warehouses and factories. Insurance savings, which could pay back the cost of the system in a few years time, were major incentives. Following several fires with large losses of life (Coconut Grove Nightclub, Boston, 1942, 492 dead; LaSalle Hotel, Chicago, 61 dead; Winecoff Hotel, Atlanta, 1946, 119 dead) fire and building officials searched for a means to provide life safety for building occupants. They found that factories and other buildings equipped with automatic sprinklers had an amazingly good life safety record compared with similar unsprinklered buildings. Today the automatic sprinkler system is an unsurpassed fire protection device. Annual records have revealed that in buildings where automatic sprinklers were installed 96 percent of all fires were controlled or extinguished by these systems. Of the remaining fires that were not controlled in sprinkler-equipped buildings, failure was due to improper maintenance, inadequate or shut off water supply, incorrect design, obstructions and partial protection.

How do sprinklers operate?
Automatic fire sprinklers are individually heat-activated, and tied into a network of piping with water under pressure. When the heat of a fire raises the sprinkler temperature to its operating point (usually 165 degrees F), a solder link will melt or a liquid-filled glass bulb will shatter to open that single sprinkler, releasing water directly over the source of the heat.

Why are sprinklers so effective?
Sprinklers operate automatically in the area of fire origin, preventing a fire from growing undetected to a dangerous size, while simultaneously sounding an alarm. Automatic fire sprinklers keep fires small. The majority of fires in sprinklered buildings are handled by one or two sprinklers.

Why are sprinklers important for life safety?
Sprinklers do not rely upon human factors such as familiarity with escape routes or emergency assistance. They go to work immediately to reduce the danger. Sprinklers prevent the fast developing fires of intense heat which are capable of trapping and killing building occupants.

What about smoke?
Smoke, a by-product of fire, is the cause of death in 80% of building occupant fatalities. Although smoke is produced as sprinklers extinguish a fire, such quantities of smoke are much less than those which would be produced by an unsprinklered fire permitted to grow.

What is the life safety record for fully sprinklered buildings?
Aside from fire fighting and explosion fatalities, there has never been a multiple loss of life in a fully sprinklered building due to fire or smoke. Individual lives have been lost when a victim or his clothing or immediate surroundings became the source of the fire. A National Fire Protection Association study for the years 1971-1975 found that approximately 20 lives are lost each year in this country in sprinklered buildings, as compared to approximately 8,000 per year in unsprinklered buildings. Some 68% of the lives lost in sprinklered buildings were due to explosions, and an additional 18% were due to the fact that the fire originated in an unsprinklered area of the building.
Ladder safety steps

Ladders are considered commonplace at homes and job sites. Because of this, safety precautions are often overlooked or taken for granted. It is estimated that 150,000 people make emergency room visits due to ladder mishaps every year.

Steps to Ladder Safety

- Inspect every ladder prior to every use.
- Never use a ladder with structural defects. If you find a defective ladder remove it from service.
- Choose the proper ladder for the intended task.
- Always use a ladder that is long enough for the job at hand.
- Do not load ladder beyond the maximum intended load.
- Barricade traffic areas and doorways in vicinity of ladder use.
- Do not carry tools and equipment while climbing a ladder. Invest in a tool belt. For heavier items use a rope to raise or lower the item.
- Do not overextend your reach while on a ladder. Keep your weight evenly distributed.
- Carry ladders parallel to the ground.
- Secure ladders when transporting.
- For Stepladders: Never climb past the second rung from the top. Always make sure the spreaders are functional and locked in place before climbing the ladder.
- For Straight ladders: Use the 4 to 1 rule: position the ladder base 1 foot away from the wall for every 4 feet of ladder height (up to the support point). Never climb past the third rung from the top on a straight ladder. The ladder should extend 3 feet past its support point.

By using these tips for ladder safety you may prevent accidents. Remember safety is everyone's business.

Leaflets Three!

With the arrival of spring, the lure of gardening and yard work calls many people outdoors. Now is a good time to remind you of the presence, identification and what to do if one is exposed to poison ivy, poison oak or poison sumac.

Poison Ivy has a wide variation of appearances depending on location. Some has heavy, rough, woody vines. Others are woody shrubs. However if you remember the saying “leaflets three, let it be” and avoid such plants, you can prevent exposure.

Poison Oak is a variety of poison ivy, which has leaflets similar to white oak leaves. It can grow as a vine but is typically found as a low growing shrub.

Poison Sumac is usually found as a shrub or small tree. Its leaves are 7 to 17 inches long with 7 to 13 leaflets attached to a central stem. It is found in moist bottomlands and swamps.

The oil that causes the allergic reaction is urushiol and is found in virtually all parts of the plant. If you come in contact with poison ivy, poison oak or poison sumac and realize it within the first three hours, swab the skin with rubbing alcohol and wash with extensive amounts of water. The key is to dilute the urushiol. The more water the greater the dilution. Don’t forget to rinse with water clothing and tools that have come in contact with the plants.

Once a rash has broken out all you can do is treat the symptoms. There are several over the counter cortisone creams available. For severe reaction seek medical help from a physician. There is the myth that the weeping blisters spread the rash. This is not based on fact. The fluid from the blisters is blood serum and is harmless. The severity of the rash is often dependent on the amount of urushiol on the skin.

Also keep in mind the urushiol can be carried in smoke so never burn poison ivy, poison oak or poison sumac as a means of eradication.

So remember, “Leaflets three let it be, leaflets five let it thrive”
In the news.....

Irradiation of red meat was approved by the Agriculture Department. The Food and Drug Administration announced that irradiation via gamma radiation is the only known way to eliminate E. coli bacteria in raw meat, and it greatly reduces listeria, salmonella, and several other bacterial varieties. Agriculture Secretary Dan Glickman said irradiation is no "silver bullet" but could, with other measures, "provide consumers with an added measure of protection." Spokesman for the food industry, which has experienced a number of recent recalls and some fatalities due to E. coli, welcomed the decision. Red meat joins poultry, produce and some spices as foods that can be irradiated in the U.S.

Chlorine gas empties middle school. In an attempt to "improve" the cleaning capabilities a custodial worker inadvertently caused the release of chlorine gas that led to the evacuation of a school and sent 58 individuals to the hospital. The worker combined a cleaner and a disinfectant to expedite his work. The two materials were incompatible and when combined led to the release of chlorine gas. The local fire department responded and coordinated the response. After cleanup and fresh air ventilation the school was reopened.

National Public Health Week 1999. "Health People in Healthy Communities" is the 1999 theme for National Public Health Week, which will be celebrated April 5-11, 1999. This national celebration provides us with an opportunity to recognize the contributions of public health to the nation's well-being as well as help focus public attention on major

Did you know.....

1994: Robert Holton announces total synthesis of taxol, an important cancer drug.

1955: One atom of mendelevium (Md, element 101) was produced by Gregory R. Choppin, Glenn Seaborg, Bernard G. Harvey, and Albert Ghiorso by bombarding a billion atoms of 253Es with helium.

1928: Alexander Fleming noticed that specks of mold that had contaminated his culture of staphylococcus were killing the bacteria. It turns out that the mold was producing penicillin, which proved to be an antibiotic.

1895: Wilhelm Roentgen discovers X-rays. Less than three months after this discovery Roentgen was awarded the first Nobel Prize in physics.

1847: The concept of sterilization was introduced. Ignaz Semmelweiss reduced the occurrence of childbed fever by having physicians wash their hands between deliveries.

1834: Dmitrii Mendeleev who was born in 1834, proposed the first periodic law and periodic table.

1796: The first vaccine was administered. English physician Edward Jenner inoculates a boy with cowpox and discovered it protected against smallpox.

Non-Profit Organization
U.S. Postage Paid
Permit 55