Take a Look Around

How do you get to work each day? Which door do you always leave by? In his book on fire investigation *Blaze, the Forensics of Fire*, author Nicolas Faith describes this as the “Fatal Power of Normality.”

Normality fatal? Well it could be. If something were to happen to the road, the door, the elevator you normally use, do you know of another way to go? Post fire or disaster statistics indicate that many people have entrenched themselves so firmly into a set routine that they tend to follow it no matter what.

In fact, it has been found that people will attempt to enter a dangerous area or a fire, even when other routes of escape are available, because that is the direction they have conditioned themselves to always go. So what to do?

Break up your routine, go a different route. See where that stairwell at the end of the hall goes. Learn all the exits, not only out of your work area, but out of your entire building. For some of you that work in larger buildings, this may take awhile, but you'd be surprised what you can learn about your building by looking at it differently.

Oh and while you're at it, take the scenic route home.

Emergency Management at FSU

Natural disasters such as hurricanes, tornadoes and floods have caused injury and serious financial loss to Florida State University. Technical emergencies such as accidental fires and incidents involving hazardous chemicals, radiological and biological agents can threaten lives and destroy University property. Because of the large number of people who live, work and study on campus, manmade emergencies involving civil unrest can pose a significant threat to the University community. FSU has developed the Emergency Management Plan to minimize the adverse effects of such natural, technical and civil emergencies; it is designed to assist faculty, staff and students in timely and effective response.

Life safety is our primary mission. To this end the Emergency Management Plan attempts to clearly define lines of authority, list responsibilities, promote working relationships and impart knowledge necessary to prevent loss of life. Protection of property is secondary to this mission, but is important.

Eleven Emergency Support Functions (ESF’s) have been identified as services needed prior to, during, and after an emergency. These services are listed on the following page along with the department that is responsible for providing that service should the need arise as well as a description of the service.
Emergency Management Support Functions

ESF 1: Transportation
Parking Services
Coordinates the use of vehicles for transport of passengers and for hauling to support University departments, voluntary relief organizations and other support groups who perform emergency response, relief and recovery activities.

ESF 2: Communications
Office of Telecommunications
Assures provisions for communicating to the University community, to local and state agencies and voluntary relief organizations before, during and after an emergency.

ESF 3: Energy/Public Works
Central Utilities
Provides energy sources and engineering services to protect life, sustain life and protect property before, during and after an emergency.

ESF 4: Information and Planning
Environmental Health & Safety
Coordinates intake and distribution of support information to maximize life safety and to protect property through relief and recovery efforts. The ESF 4 Manager is designated as the Emergency Coordination Officer for Florida State University.

ESF 5: Emergency Shelter
Housing
Identifies and surveys existing buildings for suitable space for students, faculty, and employees expected to require shelter prior to and during a disaster and to make available appropriate areas of the University for use by emergency management agencies and organizations to stage supplies and equipment during and immediately after an emergency.

ESF 6: Resource Support
Facilities Operations and Maintenance
Provides logistical and material support for University departments, local and state organizations and agencies involved in emergency response and recovery efforts.

ESF 7: Health/Medical
Thagard Student Health Center
Coordinates public health, medical care and mental health relief activities at the time of or immediately after an emergency.

ESF 8: Hazardous Materials
Environmental Health & Safety
Responds to or coordinates response to actual or potential releases of hazardous materials resulting from natural, manmade, or technical emergencies.

ESF 9: Food/Water
Business Services
Identifies food, water and ice needs and coordinates the delivery of these supplies to the emergency relief areas.

ESF 10: Public Information
University Communications
Establishes a mechanism that efficiently provides and disseminates information to the general public in the event of an emergency.

ESF 11: Law Enforcement
FSU Police Department
Establishes procedures for the command, control and coordination of all law enforcement personnel and equipment involved in the protection of the general public through first response to an emergency, in search and rescue efforts, and in the operation of the Emergency Command and Operation Centers prior to, during and after an emergency.

The complete Emergency Management Plan is available online at:
www.safety.fsu.edu/emermanplan.html
Ladders - Simple Devices, BUT...

Unless Used Safely, There May Be a Fall in the Forecast

To paraphrase an old adage whoever goes up must come down, and in the case of ladders, care is required when going in either direction. Even before making the climb, however, it's essential to know and follow safe work practices in selecting, inspecting, and setting up a ladder. (Training in these steps as well as in the actual use of the ladder should be provided, although most workers are likely to believe they don't need it.)

Selection

Although there are other types of ladders, we'll focus here on the portable variety - stepladders and straight ladders - and how to select the right one for the particular job. Stepladders are freestanding, and rest four “feet” on the floor or ground. Among their uses are ceiling painting, changing light bulbs in a ceiling fixture, reaching items on a high shelf, and clipping shrubbery. They are safest if they are 10 feet or less in length, and should never be longer than 20 feet.

Straight ladders, generally heavier, are called for when the work to be done is at a higher level, as in painting upper floors of a house, or when the worker must step from the ladder to a surface such as a roof. In construction, extension ladders permit climbing up to 44 feet (beyond that, scaffolds should be used). They have two feet on the ground (or floor) and lean against a vertical surface - like a wall, the edge of a roof, or a tree.

Both kinds of ladders can be made of wood, metal, or fiberglass. Wooden ladders are more readily damaged; metal ladders should be avoided when working near electrical wires or equipment; fiberglass can be weakened by high heat.

Inspection

All ladders should be inspected regularly - and before each use - for defects such as weak or wobbly construction, defective or missing rungs and rails, dirt, oil or sticky substances on steps or rungs. Ladders should not be painted, as this could conceal defects. If such defects are found, the ladder should not be used, but should be tagged as dangerous and promptly removed from service. Proper storage is also important. Although relatively short stepladders may be stored vertically, straight ladders should be stored flat - never on the ground, where they could be weakened by heat or dampness, but under cover and with enough supports to keep them from sagging.

Setting Up

A stepladder should never be used as a straight ladder by leaning it against a support; it should be fully opened, with the spreader securely locked. The feet of either type should be placed on a firm surface, as nearly flat as possible. If the ground is not level, use a ladder with a non-slip base, like safety feet, or block the base. Straight or extension ladders should be set up so that the distance from the base to the wall is one fourth of the distance to the point of support. This is not the same distance as the length of the ladder, since the ladder should extend about three feet past the supporting point. The ladder should lean against something solid and unmovable - never against a window sash or glass surface. If work must be done on or near a window, a board fastened securely across the ladder will give a bearing on each side of the window.

If the ladder is positioned in front of a door that opens toward it, the door must be locked, blocked open, or guarded by another worker. If there's any other situation where a person or vehicle could bump into the ladder, then either a helper should stand guard, or the space around the ladder should be roped off.

Time to Climb

Only one person at a time should be on the ladder. The person should face the ladder both going up and coming down, hold on to the side rails, and proceed slowly - no farther than the second highest step of a stepladder or the third rung from the top or a straight ladder. Because hands must be free for climbing, tools and other objects should be carried in a

(Continued on page 4)
IN THE NEWS…
Who needs a Mouse when you have a Monkey?

Ever wish you could just plug yourself into your computer and think about where you want to click? Well, scientists are one step closer to making cybernetic implants a reality. In an experiment, monkeys were taught to play a computer game by moving their arms, then the neurons which controlled those muscles were isolated and electrodes connected to the neurons. The monkeys’ arms were strapped down and they soon learned that their thoughts alone could play the computer game. As the monkeys played on, and adjustments were made to the software, they became better at controlling the action.

Scientists hope that further research in the area could lead to breakthroughs in prosthetics for paralyzed humans. Already, Dr. Phil Kennedy, chief executive officer of Neural Signals in Atlanta, Georgia, implanted electrodes into the brain of a quadriplegic man. After weeks of training and great effort, he was able to move a cursor across a computer screen.

(Ladders, continued from page 3)

tool belt or a sack that hangs from a shoulder strap or hauled up later with a line and bucket.

One of the commonest causes of ladder accidents is over-reaching - that is, stretching too far to either side. The safe way is not to reach more than an arm's length to either side, without leaning the body past the side rails. Instead, descend the ladder and move it as needed to the next position to be worked. Another route to a serious fall is trying to straddle the space between the ladder and another object or surface. So is working in a high wind. But if the initial steps of selecting, inspecting, and positioning the ladder have been carried out, and safe climbing rules observed, the result is a sound job and a sound worker. (Source: 2002 BLR)